Actions

::Spectrophotometry

::concepts

Light::sample    Through::region    Spectrum::detector    Which::infrared    Visible::solution    Measure::spectral

Spectrophotometer
Beckman IR-1 Spectrophotometer, ca. 1941

{{#invoke:Infobox|infobox}}

In chemistry, spectrophotometry is the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength.<ref name="nist.gov">Allen, D., Cooksey, C., & Tsai, B. (2010, October 5). Spectrophotometry. Retrieved from http://www.nist.gov/pml/div685/grp03/spectrophotometry.cfm</ref> It is more specific than the general term electromagnetic spectroscopy in that spectrophotometry deals with visible light, near-ultraviolet, and near-infrared, but does not cover time-resolved spectroscopic techniques.

Spectrophotometry uses photometers that can measure a light beam's intensity as a function of its color (wavelength) known as spectrophotometers. Important features of spectrophotometers are spectral bandwidth, (the range of colors it can transmit through the test sample), and the percentage of sample-transmission, and the logarithmic range of sample-absorption and sometimes a percentage of reflectance measurement.

A spectrophotometer is commonly used for the measurement of transmittance or reflectance of solutions, transparent or opaque solids, such as polished glass, or gases. However they can also be designed to measure the diffusivity on any of the listed light ranges that usually cover around 200 nm - 2500 nm using different controls and calibrations.<ref name="nist.gov"/> Within these ranges of light, calibrations are needed on the machine using standards that vary in type depending on the wavelength of the photometric determination.<ref>Schwedt, Georg. (1997). The Essential Guide to Analytical Chemistry. (Brooks Haderlie, trans.). Chichester, NY: Wiley. (Original Work Published 1943). pp. 16-17</ref>

An example of an experiment in which spectrophotometry is used is the determination of the equilibrium constant of a solution. A certain chemical reaction within a solution may occur in a forward and reverse direction where reactants form products and products break down into reactants. At some point, this chemical reaction will reach a point of balance called an equilibrium point. In order to determine the respective concentrations of reactants and products at this point, the light transmittance of the solution can be tested using spectrophotometry. The amount of light that passes through the solution is indicative of the concentration of certain chemicals that do not allow light to pass through.

The use of spectrophotometers spans various scientific fields, such as physics, materials science, chemistry, biochemistry, and molecular biology.<ref name=george>Rendina, George. Experimental Methods in Modern Biochemistry W. B. Saunders Company: Philadelphia, PA. 1976. pp. 46-55</ref> They are widely used in many industries including semiconductors, laser and optical manufacturing, printing and forensic examination, as well in laboratories for the study of chemical substances. Ultimately, a spectrophotometer is able to determine, depending on the control or calibration, what substances are present in a target and exactly how much through calculations of observed wavelengths.


Spectrophotometry sections
Intro  Design  UV-visible spectrophotometry  IR spectrophotometry  Spectroradiometers  See also  References  External links  

PREVIOUS: IntroNEXT: Design
<<>>