::Gravitational microlensing


First::author    Journal::source    Events::event    Title::einstein    Bibcode::volume    Pages::light

{{ safesubst:#invoke:Unsubst||$N=Use dmy dates |date=__DATE__ |$B= }} Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light (clouds of gas and dust). These objects make up only a tiny portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

When a distant star or quasar gets sufficiently aligned with a massive compact foreground object, the bending of light due to its gravitational field, as discussed by Einstein in 1915, leads to two distorted unresolved images resulting in an observable magnification. The time-scale of the transient brightening depends on the mass of the foreground object as well as on the relative proper motion between the background 'source' and the foreground 'lens' object.

Since microlensing observations do not rely on radiation received from the lens object, this effect therefore allows astronomers to study massive objects no matter how faint. It is thus an ideal technique to study the galactic population of such faint or dark objects as brown dwarfs, red dwarfs, planets, white dwarfs, neutron stars, black holes, and Massive Compact Halo Objects. Moreover, the microlensing effect is wavelength-independent, allowing study of source objects that emit any kind of electromagnetic radiation.

Microlensing by an isolated object was first detected in 1989. Since then, microlensing has been used to constrain the nature of the dark matter, detect extrasolar planets, study limb darkening in distant stars, constrain the binary star population, and constrain the structure of the Milky Way's disk. Microlensing has also been proposed as a means to find dark objects like brown dwarfs and black holes, study starspots, measure stellar rotation, and probe quasars<ref name="W2006">{{#invoke:citation/CS1|citation |CitationClass=book }}</ref><ref>{{#invoke:Citation/CS1|citation |CitationClass=journal }}</ref> including their accretion disks.<ref>{{#invoke:Citation/CS1|citation |CitationClass=journal }}</ref><ref>{{#invoke:Citation/CS1|citation |CitationClass=journal }}</ref><ref>{{#invoke:Citation/CS1|citation |CitationClass=journal }}</ref><ref>{{#invoke:Citation/CS1|citation |CitationClass=journal }}</ref>

Gravitational microlensing sections
Intro  How it works  Observing microlensing  History  Mathematics  Extreme microlensing events  Detection of extrasolar planets  Microlensing experiments  References  External links  

PREVIOUS: IntroNEXT: How it works