## ::Space (mathematics)

### ::concepts

Space::spaces    Linear::between    Bourbaki::geometry    Product::measure    Every::called    Complex::inner

{{#invoke:Hatnote|hatnote}} {{#invoke:Hatnote|hatnote}} {{ safesubst:#invoke:Unsubst||$N=One source |date=__DATE__ |$B= {{#invoke:Message box|ambox}} }}

A hierarchy of mathematical spaces: The inner product induces a norm. The norm induces a metric. The metric induces a topology.

In mathematics, a space is a set (sometimes called a universe) with some added structure.

Mathematical spaces often form a hierarchy, i.e., one space may inherit all the characteristics of a parent space. For instance, all inner product spaces are also normed vector spaces, because the inner product induces a norm on the inner product space such that:

$\left\| x \right\| = \sqrt{\langle x, x\rangle} .$

Modern mathematics treats "space" quite differently compared to classical mathematics.{{ safesubst:#invoke:Unsubst||date=__DATE__ |\$B= {{#invoke:Category handler|main}}{{#invoke:Category handler|main}}[citation needed] }}

Space (mathematics) sections