Category theory::Embedding


First::theory    Title::harvnb    Which::category    ''X''::topology    ''Y''::category    Partial::ldots

Category theory In category theory, there is no satisfactory and generally accepted definition of embeddings that is applicable in all categories. One would expect that all isomorphisms and all compositions of embeddings are embeddings, and that all embeddings are monomorphisms. Other typical requirements are: any extremal monomorphism is an embedding and embeddings are stable under pullbacks.

Ideally the class of all embedded subobjects of a given object, up to isomorphism, should also be small, and thus an ordered set. In this case, the category is said to be well powered with respect to the class of embeddings. This allows to define new local structures on the category (such as a closure operator).

In a concrete category, an embedding is a morphism ƒA → B which is an injective function from the underlying set of A to the underlying set of B and is also an initial morphism in the following sense: If g is a function from the underlying set of an object C to the underlying set of A, and if its composition with ƒ is a morphism ƒgC → B, then g itself is a morphism.

A factorization system for a category also gives rise to a notion of embedding. If (EM) is a factorization system, then the morphisms in M may be regarded as the embeddings, especially when the category is well powered with respect to M. Concrete theories often have a factorization system in which M consists of the embeddings in the previous sense. This is the case of the majority of the examples given in this article.

As usual in category theory, there is a dual concept, known as quotient. All the preceding properties can be dualized.

An embedding can also refer to an embedding functor.

Embedding sections
Intro  Topology and geometry  Algebra  Order theory and domain theory  Metric spaces  Category theory  See also  Notes   References    External links   

Category theory
PREVIOUS: Metric spacesNEXT: See also