::Comparative anatomy


Anatomy::first    Similar::andreas    Vesalius::anatomy    Right::which    Thumb::their    Humans::galen

Comparative anatomy studies similarities and differences in organisms. The image shows homologous bones in the upper limb of various vertebrates.

Comparative anatomy is the study of similarities and differences in the anatomy of different species. It is closely related to evolutionary biology and phylogeny (the evolution of species).

Comparative anatomy has long served as evidence for evolution; it indicates that various organisms share a common ancestor. Also, it assists scientists in classifying organisms based on similar characteristics of their anatomical structures. Comparative anatomy supports Darwin's theory of descent with modification, also known as evolution. A common example of comparative anatomy is the similar bone structures in forelimbs of cats, whales, bats, and humans. All of these appendages consist of the same basic parts; yet, they serve completely different functions. The skeletal parts which form a structure used for swimming, such as a fin, would not be ideal to form a wing, which is better-suited for flight. One explanation for the forelimbs' similar composition is descent with modification. Through random mutations and natural selection, each organism's anatomical structures gradually adapted to suit their respective habitats.<ref>{{#invoke:citation/CS1|citation |CitationClass=book }}</ref> Two major concepts of comparative anatomy are:

  1. Homologous structures - structures (body parts/anatomy) which are similar in different species because the species have common descent. They may or may not perform the same function. An example is the forelimb structure shared by cats and whales.
  2. Analogous structures - structures similar in different organisms because they evolved in a similar environment, rather than were inherited from a recent common ancestor. They usually serve the same or similar purposes. An example is the streamlined torpedo body shape of porpoises and sharks. So even though they evolved from different ancestors, porpoises and sharks developed analogous structures as a result of their evolution in the same aquatic environment.

The rules for development of special characteristics which differ significantly from general homology were listed by Karl Ernst von Baer (the Baer laws).

The human heart (left) and chicken heart (right) share many similar characteristics. Avian hearts pump faster than mammalian hearts. Due to the faster heart rate, the muscles surrounding the ventricles of the chicken heart are thicker. Both hearts are labeled with the following parts: 1. Ascending Aorta 2. Left Atrium 3. Left Ventricle 4. Right Ventricle 5. Right Atrium

Comparative anatomy sections
Intro  History  See also  Footnotes  References   External links   

PREVIOUS: IntroNEXT: History