::142857 (number)
::concepts
{{#invoke:main|main}}
{{#invoke:redirect hatnote|redirect}}
{{#invoke:Infobox|infobox}}
142857, the six repeating digits of 1/7, <math> 0.\overline{142857} </math>, is the best-known cyclic number in base 10.<ref>"Cyclic number", The Internet Encyclopedia of Science</ref><ref>Michael W. Ecker, "The Alluring Lore of Cyclic Numbers", The Two-Year College Mathematics Journal, Vol.14, No.2 (March 1983), pp. 105–109</ref><ref>Cyclic number, PlanetMath</ref><ref>{{#invoke:citation/CS1|citation
|CitationClass=web
}}</ref> If it is multiplied by 2, 3, 4, 5, or 6, the answer will be a cyclic permutation of itself, and will correspond to the repeating digits of 2/7, 3/7, 4/7, 5/7, or 6/7 respectively.
142857 (number) sections
Intro Calculations 1/7 as an infinite sum Other bases Connection to the enneagram References
PREVIOUS: Intro | NEXT: Calculations |
<< | >> |
Number::overline Digits::cyclic Cdots::numbers Cyclic::process Decimal::articles Figure::result
{{#invoke:main|main}}
{{#invoke:redirect hatnote|redirect}}
{{#invoke:Infobox|infobox}}
142857, the six repeating digits of 1/7, <math> 0.\overline{142857} </math>, is the best-known cyclic number in base 10.<ref>"Cyclic number", The Internet Encyclopedia of Science</ref><ref>Michael W. Ecker, "The Alluring Lore of Cyclic Numbers", The Two-Year College Mathematics Journal, Vol.14, No.2 (March 1983), pp. 105–109</ref><ref>Cyclic number, PlanetMath</ref><ref>{{#invoke:citation/CS1|citation
|CitationClass=web
}}</ref> If it is multiplied by 2, 3, 4, 5, or 6, the answer will be a cyclic permutation of itself, and will correspond to the repeating digits of 2/7, 3/7, 4/7, 5/7, or 6/7 respectively.
142857 (number) sections
Intro Calculations 1/7 as an infinite sum Other bases Connection to the enneagram References
PREVIOUS: Intro | NEXT: Calculations |
<< | >> |