Actions

::142857 (number)

::concepts



{{#invoke:main|main}} {{#invoke:redirect hatnote|redirect}} {{#invoke:Infobox|infobox}} 142857, the six repeating digits of 1/7, <math> 0.\overline{142857} </math>, is the best-known cyclic number in base 10.<ref>"Cyclic number", The Internet Encyclopedia of Science</ref><ref>Michael W. Ecker, "The Alluring Lore of Cyclic Numbers", The Two-Year College Mathematics Journal, Vol.14, No.2 (March 1983), pp. 105–109</ref><ref>Cyclic number, PlanetMath</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> If it is multiplied by 2, 3, 4, 5, or 6, the answer will be a cyclic permutation of itself, and will correspond to the repeating digits of 2/7, 3/7, 4/7, 5/7, or 6/7 respectively.


142857 (number) sections
Intro   Calculations    1/7 as an infinite sum    Other bases    Connection to the enneagram   References  

PREVIOUS: IntroNEXT: Calculations
<<>>

Number::overline    Digits::cyclic    Cdots::numbers    Cyclic::process    Decimal::articles    Figure::result

{{#invoke:main|main}} {{#invoke:redirect hatnote|redirect}} {{#invoke:Infobox|infobox}} 142857, the six repeating digits of 1/7, <math> 0.\overline{142857} </math>, is the best-known cyclic number in base 10.<ref>"Cyclic number", The Internet Encyclopedia of Science</ref><ref>Michael W. Ecker, "The Alluring Lore of Cyclic Numbers", The Two-Year College Mathematics Journal, Vol.14, No.2 (March 1983), pp. 105–109</ref><ref>Cyclic number, PlanetMath</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> If it is multiplied by 2, 3, 4, 5, or 6, the answer will be a cyclic permutation of itself, and will correspond to the repeating digits of 2/7, 3/7, 4/7, 5/7, or 6/7 respectively.


142857 (number) sections
Intro   Calculations    1/7 as an infinite sum    Other bases    Connection to the enneagram   References  

PREVIOUS: IntroNEXT: Calculations
<<>>