## ::Approximation error

### ::concepts

{{#invoke:broader|broader}}

The **approximation error** in some data is the discrepancy between an exact value and some approximation to it. An approximation error can occur because

- the measurement of the data is not precise due to the instruments. (e.g., the accurate reading of a piece of paper is 4.5 cm but since the ruler does not use decimals, you round it to 5 cm.) or
- approximations are used instead of the real data (e.g., 3.14 instead of π).

In the mathematical field of numerical analysis, the numerical stability of an algorithm in numerical analysis indicates how the error is propagated by the algorithm.

**Approximation error sections**

Intro Formal Definition Examples Uses of relative error Instruments See also References External links

PREVIOUS: Intro | NEXT: Formal Definition |

<< | >> |

Error::value Relative::absolute Error'''::approx Scale::example Exact::analysis Would::percent

{{#invoke:broader|broader}}

The **approximation error** in some data is the discrepancy between an exact value and some approximation to it. An approximation error can occur because

- the measurement of the data is not precise due to the instruments. (e.g., the accurate reading of a piece of paper is 4.5 cm but since the ruler does not use decimals, you round it to 5 cm.) or
- approximations are used instead of the real data (e.g., 3.14 instead of π).

In the mathematical field of numerical analysis, the numerical stability of an algorithm in numerical analysis indicates how the error is propagated by the algorithm.

**Approximation error sections**

Intro Formal Definition Examples Uses of relative error Instruments See also References External links

PREVIOUS: Intro | NEXT: Formal Definition |

<< | >> |